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PREFACE 

During the last few years modem linear control theory has advanced rapidly 
and is now being recognized as a powerful and eminently practical tool for 
the solution of linear feedback control problems. The main characteristics of 
modern linear control theory are the state space description of systems, 
optimization in terms of quadratic performance criteria, and incorporation 
of Kalman-Bucy optimal state reconstruction theory. The significant ad- 
vantage of modern linear control theory over the classical theory is its ap- 
plicability to control problems involving multiinput multioutput systems and 
time-varying situations; the classical theory is essentially restricted to single- 
input single-output time-invariant situations. 

The use of the term "modem" control theory could suggest a disregard for 
"classical," or "conventional," control theory, namely, the theory that con- 
sists of design methods based upon suitably shaping the transmission and 
loop gain functions, employing pole-zero techniques. However, we do not 
share such a disregard; on the contrary, we believe that the classical approach 
is well-established and proven by practice, and distinguishes itself by a cnl- 
lection of sensible and useful goals and problem formulations. 

This book attempts to reconcile modern linear control theory with classical 
control theory. One of the major concerns of this text is to present design 
methods, employing modern techniques, for obtaining control systems that 
stand up to the requirements that have been so well developed in the classical 
expositions of control theory. Therefore, among other things, an entire 
chapter is devoted to a description of the analysis of control systems, mostly 
following the classical lines of thought. In the later chapters of the book, in 
which modern synthesis methods are developed, the chapter on analysis is 
recurrently referred to. Furthermore, special attention is paid to subjects that 
are standard in classical control theory but are frequently overlooked in 
modern treatments, such as nonzero set point control systems, tracking 
systems, and control systems that have to cope with constant disturbances. 
Also, heavy emphasis is placed upon the stochastic nature of control problems 
because the stochastic aspects are so essential. 
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viii Preface 

We believe that modern and classical control theory can very well be taught 
simultaneously, since they cover different aspects of the same problems. 
There is no inherent reason for teaching the classical theory first in under- 
graduate courses and to defer the modern theory, particularly the stochastic 
part of it, t o  graduate courses. In fact, we believe that a modern course 
should be a blend of classical, modern, and stochastic control theory. This is 
the approach followed in this hook. 

The book bas been organized as follows. About half of the material, 
containingmost of the analysis and design methods, as well as alarge number 
of examples, is presented in unmarked sections. The finer points, such as 
conditions for existence, detailed results concerning convergence to steady- 
state solutions, and asymptotic properties, are dealt with in sections whose 
titles have been marked with an asterisk. TIE i~~iniarlcedsectro~is have been so 
written that they forni a textbook for a tiso-se!i~esterjirst course on control 
theory at the senior orfist-year grodlrate level. The marked sections consist 
of supplementary material of a more advanced nature. The control engineer 
who is interested in applying the material wiU find most design methods in 
the unmarked sections but may have to refer to the remaining sections for 
more detailed information on difficult points. 

The following background is assumed. The reader should have had a 
k s t  course on linear systems or linear circuits and should possess some 
introductory knowledge of stochastic processes. I t  is also recommended that 
the reader have some experience in digital computer programming and that he 
have access to a computer. We do not believe that it 1s necessary for the 
reader to have followed a course on classical control theory before studying 
the material of this book. 

A chapter-by-chapter description of the book follows. 
In Chapter 1, "Elements of Linear System Theory," the description of 

linear systems in terms of their state is the startingpoint, while transfer matrix 
and frequency response concepts are derived from the state description. 
Topics important for the steady-state analysis of linear optimal systems are 
carefully discussed. They are: controllability, stabilizability, reconstructibility, 
detectability, and duality. The last two sections of this chapter are devoted to 
a description of vector stochastic processes, with special emphasis on the 
representation of stochastic processes as the outputs of linear differential 
systems driven by white noise. In later chapters this material is extensively 
employed. 

Chapter 2, "Analysis of Control Systems," gives a general description of 
control problems. Furthermore, it includes a step-by-step analysis of the 
Various aspects of control system performance. Single-input single-output 
and multivariable control systems are discussed in a unified framework by 
the use of the concepts of mean square tracking error and mean square input. 
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Chapter 3, "Optimal Linear State Feedback Control Systems," not only 
presents the usual exposition of the linear optimal regulator problem but 
also gives a rather complete survey of the steady-state properties of the 
Riccati equation and the optimal regulator. I t  deals with the numerical 
solution of Riccati equations and treats stochastic optimal regulators, optimal 
tracking systems, and regulators with constant disturbances and nonzero 
set points. As a special feature, the asymptotic properties of steady-state 
control laws and the maximally achievable accuracy of regulators and track- 
ing systems are discussed. 

Chapter 4, "Optimal Linear Reconstruction of the State," derives the 
Kalman-Bucy filter starting with observer theory. Various special cases, such 
as singular observer problems and problems with colored observation noise, 
are also treated. The various steady-state and asymptotic properties of 
optimal observers are reviewed. 

In Chapter 5, "Optimal Linear Output Feedback Control Systems," the 
state feedback controllers of Chapter 3 are connected to the observers of 
Chapter 4. A heuristic and relatively simple proof of the separation principle 
is presented based on the innovations concept, which is discussed in Chapter 
4. Guidelines are given for the des~gn of various types of output feedback 
control systems, and a review of the design of reduced-order controllers is 
included. 

In Chapter 6, "Linear Optimal ControlTheory for Discrete-Time Systems," 
the entire theory of Chapters 1 through 5 is repeated in condensed form for 
linear discrete-time control systems. Special attention is given to state dead- 
beat and output deadbeat control systems, and to questions concerning the 
synchronization of the measurements and the control actuation. 

Throughout the book important concepts are introduced in definitions, 
and the main results summarized in the form of theorems. Almost every 
section concludes with one or more examples, many of which are numerical. 
These examples serve to clarify the material of the text and, by their physical 
significance, to emphasize the practical applicability of the results. Most 
examples are continuations of earlier examples so that a specific problem is 
developed over several sections or even chapters. Whenever numerical values 
are used, care has been taken to designate the proper dimensions of the 
various quantities. To this end, the SI system of units has been employed, 
which is now being internationally accepted (see, e.g., Barrow, 1966; IEEE 
Standards Committee, 1970). A complete review of the SI system can be 
found in the Reconinieiidotiotis of the International Organizat~on for Stand- 
ardization (various dates). 

The book contains about 50 problems. They can be divided into two 
categories: elementary exercises, directly illustrating the material of the text; 
and supplementary results, extending the material of the text. A few of the 



problems require the use of a digital computer. The problems marked with 
an asterisk are not considered to belong to the textbook material. Suitable 
term projects could consist of writing and testing the computer subroutines 
listed in Section 5.8. 

Many references are quoted throughout the book, but no attempt has 
been made to reach any degree of completeness or to do justice to history. 
The fact that a particular publication is mentioned simply means that it has 
been used by us as source material or that related material can be found in it. 
The references are indicated by the author's name, the year of publication, 
and a letter indicating which publication is intended (e.g., Miller, 1971b). 
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N O T A T I O N  AND SYMBOLS 

Chapters are subdivided into sections, which are numbered 1.1, 1.2, 1.3, and 
so on. Sections may he divided into subsections, which are numbered 1.1.1, 
1.1.2, and so on. Theorems, examples, figures, and similar features are 
numbered consecutively within each chapter, prefixed by the chapter number. 
The section number is usually given in parentheses if reference is made to an 
item in another section. 

Vectors are denoted by lowercase letters (such as x and 1 0 ,  matrices by 
uppercase letters (such as A and B) and scalars by lower case Greek lellers 
(such as a. and p). I t  has not been possible to adhere to these rules completely 
consistently; notable exceptions are f for time, i  and j for integers, and so on. 
The components of vectors are denoted by lowercase Greek letters which 
correspond as closely as possible to the Latin letter that denotes the vector; 
thus the 11-dimensional vector x has as components the scalars C,, f2, . . . , f,,, 
the 111-dimensional vector 1/ has as components the scalars ~ 1 ~ .  ?la. ' ' ' , ?7.,, 
and so on. Boldrace capitals indicate the Laplace or  z-transform of the 
corresponding lowercase time functions [X(s) for the Laplace transform of 
x(t), Y(z) for the z-transform of ~ ( i ) ,  etc.]. 

xT 
col(fl.Czr . . . , fa) 
( ~ l l >  v l 3  . . . 9 ?1,0 kj 9 -1 (XI. 4 
llxll 
dim (x) 
A~ 
A-' 
tr ( 4  
det (A) 

transpose of the vector x 
column vector with components fl, C,, . . . , 6, 
row vector with components ?ll, ?i2, ' ' ' , TI,, 
partitioning of a column vector into subveclors x, 

and x, 
norm of a vector x 
dimension of the vector x 
transpose of the matrix A 
inverse of the square matrix A 
trace of the square matrix A 
determinant of the square matrix A 



xxii Notation and Symbols 

diag (A1, A,, . . . , A,,)  
(el, e,, . . . , en) 

(: :) 
diag (Jl, J,, . . . , J,J 

~ { x ( O }  
Re (a)  
In1 (a) 
min (a, p) 
min 

max 
= 

dit~gonal matrix with diagonal entries A,, A,, . . . , A,  
partitioning of a matrix into its columns el, e,, . . . , e,, 

partitioning of a malrix into its rowsf,,f,, . . . , f, 

partitioning of a matrix into column blocks TI, 
T?, . . . : T ,  

partitioning of a matrix into row blocks U,, U,, . . . , 
U," 

partitioning of a matrix into blocks A, B, C, and D 

block diagonal matrix with diagonal blocks J,, 
J,, . . . , J", 

the real symmetric or Hermitian matrix M i s  positive- 
definite or  nonnegative-definite, respectively 

the real symmetric or  Hermitian matrix M - N is 
positive-definite or nonnegative-definite, respec- 
tively 

time derivative of the time-varying vectol x(t) 

Laplace transform of x(t) 
real part of the complex number a 
imaginary part of the complex number a 
the smallest of the numbers a and ,B 
the minimum with respect to a 

the maximum with respect to a 

0 zero; zero vector; zero matrix 
A(t), A(& A plant matrix of a finite-dimensional linear differential 

system 



Notntion and Symbols xxiii 

input matrix of a finite-dimensional linear differential 
system (B becomes b in the single-input case) 

output matrix of afinite-dimensional linear differential 
system; output matrix for the observed variable 
(C becomes c in the single-output case) 

mean square tracking or regulating error 
mean square input 
output matrix for the controlled variable (D becomes 

d in the single-output case) 
base of the natural logarithm 
tracking or  regulating error; reconstruction error 
i-th characteristic vector 
expectation operator 
gain matrix of the direct link of a plant (Ch. 6 only) 
frequency 
regulator gain matrix (F becomes f in the single-input 

case) 
controller transfer matrix (from y to -11) 
plant transfer matrix (from ti to y) 
integer 
unit matrix 
a; integer 
return difference matrix or function 
observer gain matrix (K becomes k in the single- 

output case) 
plant transfer matrix (from ti to z) 
closed-loop transfer matrix 
dimension of the state x 
transfer matrix o r  funclion from r to zi in a control 

system 
controllability matrix 
solution of the regulator Riccati equation 
controller transfer matrix (from r to ti) 
terminal state weighting matrix 
reconstructibility matrix 
variance matrix; solution of the observer Riccati 

eqhation 
initial variance matrix 
second-order moment matrix 
reference variable 
weighting matrix of the state 
weighting matrix of the input 



nriv Notntion and Symbols 

covariance function of the stochastic process v 
variable of the Laplace transform 
sensitivity malrix or function 
time 
transmission 
input variable 
stochastic process 
observation noise, measurement noise 
constant disturbance 
equivalent disturbance at the controlled variable 
disturbance variable 
intensity of a white noise process 
white noise process 
weighting matrix of the tracking or regulating error 
weighting matrix of the input 
stale variable 
reconstructed state variable 
initial state 
output variable; obsenied variable 
z-transform variable 
controlled variable 
compound matrix of hystem and adjoint differential 

equations 
delta function 
sampling interval 
scalar controlled variable 
scalar output variable; scalar observed variable 
time difference; time constant; normalized angular 

frequency 
i-th characteristic value 
scalar input variable 
scalar stochastic process 
i-th zero 
scalar state variable 
i-th pole 
weighting coefficient of the integrated or mean square 

input 
spectral density matrix of the stochastic process u 
characteristic polynomial 
closed-loop characteristic polynomial 



A 
Hz 
kg 
kmol 
m 
N 
rad 
S 

v 
n 

transition matrix 
numerator polynomial 
angular frequency 

ampere 
hertz 
kilogram 
kilomole 
meter 
newton 
radian 
second 
volt 
ohm 
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